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The Need for Change

The nature of mathematics is changing rapidly: both the techniques of

investigation and the areas of research interest. In addition, mathematics is

becoming essential to many more disciplines. The explosive growth of new

technologies has increased the number and variety of useful applications.

Calculators and computers are increasing the need for mathematical knowledge
by making previously qualitative disciplines (from literature to political

science) more quantitat’ve. Calculators are decreasing the need for

computation and placing greater demands on analytical and thinking skills.

We have every reason to expect that the hectic pace of change in

mathematics will continues through the foreseeable future. Thus, mathematics

education must learn to adjust to a situation in which each new development

will be superseded before it is widely implemented. Educational research will

This paper is supported by a grant from the National Science Foundation (NSF #TEI-8751491)..
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be part of a process of continuous development and renewal. Determining
appropriate goals in this uncertain environment is a daunting task. Any
specific skill we choose to teach, whether compui tional or high-level-
cognitive, could become obsolete before the learner ever has need of it. It
is a situation in which curriculum design deserves very careful thought and
presents a challenge to even the most experienced teacher. Groups of students
who in the past needed very‘little mathematics now must be taught to perform
applications which they will need in their future work and which use
techniques which have not yet been invented.

This chapter is an attempt to describe the sorts of curricular changes
which many of those in mathematics education (though by no means all) of those
in mathematics education are now recommending. There is wide recognition that
more research needs to be done and thus that each innovation should be
carefully monitored before it is widely implemented. After describing the
general direction of change in mathematics education, I will consider relevant

research and finally indicate some of the questions that ought to guide future

investigations.

Changes that are needed

What are the key modifications needed in the K-12 mathematics curriculum?
Some entail increased emphasis on traditional objectives such as the
development of number sense and symbol sense. Other changes involve the
introduction of material rarely found in the current curriculum, such as data
analysis, graph theory and probability. Still octhers involve de-emphasis of
topics whose aim has been to develop certain manipulative skills that are no

longer very useful, such as long division and factoring trinomials.




But far more important than changing the content of the curriculum, is
the need to encourage students to develop a spirit of inquiry, an intellectual

curinsity and a sense of mathematical power.

Mathematical Power

Education in all Ssubjects requires a balance between developing skills
and knowledge, and the ability to deploy that knowledge. But computers are
changing the equation and some skills are no longer prercquisites to further
study. Orce it was essential to stress penmanship before there could be a
focus on what had been written; word processors have shifted the balance back
to the content of the writing,

Calculators mean that we can shift the emphasis in Kk-12 wathematics away

from skill development and toward mathematical power. This means the

development of the abilities to:
- understand mathematical concepts and methods;
- discern mathematical relations;
~ reason logically; and
= apply mathematical concepts, methods, and relations to solve a
variety of nonroutine problems,

Students who achieve a considerable degree of mathematical power during
their K-12 years will be able to use mathematics in their everyday lives or in
a profession or vocation and they will be able to pursue further study of
mathematics or other subjects that require mathematics. But computational
power itself is "ot enough, Students must also learn to read and understand
mathematical texts and to communicate to others orally and in writing results

of their own mathematical investigations and Problem-solving. The mathematics
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curriculum should provide Support for the teaching of reading, wri<’ g and
oral communication.

Calculator and computer technology should be used throughout the K-12
mathematics curriculum and new curriculum materials should be designed in the
expectation of continuous change resulting from further scientific and
technological developments.

Modern relevant applications should be & fundamental part of the
curriculum to a much greater extent than at present,

"Applications" need not be constrained to "real world" problems. The
significant criterion for the suitability of an application is whether it has
the potential to engage the students; often this can be done with questicns of

purely mathematical interest such as "what is the largest prime number?",

Mathematics Instruction

Mathematical teaching must adapt to new realities. It will no longer be
appropriate for most mathematics instruction to be in the traditional mode of
teacher-presenting-material-to-a-class. Thinking mathematically is an active
conception which requires more than listening. No single teaching method nor
any single kind of learning experience can develop the varied kinds of
mathematical abilities needed for mathematical power. The Cockroft Report

(Cockroft, 1982) indicates some of the range of activities needed:

- Exposition by the teacher;
- Discussion between the teacher and the pupils
- Discussion between pupils themselves

- Practical work

- Consolidation and Practice of fundamental skills and routines;

o




- Problem solving, including the appl:

cation of mathematics to everyday

Situations;

- Investigational work

The standard mode of presentationr in which a teacher lectures to students
may still be appropriate for the delivery of straightforward information, but

more imaginative settings are needed for the development of problem-solving

and reasoning skills, particularly in the context of using calculator and

computer technology. For example, two formats which should be used often are:

- small group work where the class is divided into teams of, say, three

to five students who work collaboratively on assigned problems (which
might take anywhere from five minutes to two weeks to solve)

= true class discussion in which the teacher plays the role of moderator
rather than leader.

In both of these formats, the teacher can be a catalyst who helps students

learn to think for themselves rather than having the teacher act as a trainer

whose role is to show the "right way" to do something. Both formats also

allow the teacher to use technology interactively with students,

A useful metaphor is that of the teacher as a sort of intellectual coach.

At various times, this will require the teacher to be:

- a role model who demonstrates not just the "right way" but also the

false starts and the higher-order thinking skills that lead to the

resolution of problems;

= a consultant helping individuels, small groups, or the whole ciass to

decide if their work is keeping to the subject and maring reasonable

progress;
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- a moderator who poses questions for the class (or individuals or
groups) to consider, but leaves most of the decision-making to the
class;

- an interlocutor coaching the students during class presentations,
encouraging them to reflect on their activities and to explore
mathematics on their own, challenging them to make sure that what
they are doing is reasonable and purposaful, and ensuring that

students can defend their conclusions.

Research Directions

Research on teaching for higher-order thinking, (Peterson, in press),
lends support to the notion that instruction needs to change from the
traditional, teacher-presenting-material-to-the-class mode to a less
structured, indirect style of teaching. Because the development of higher
level thinking in mathematics has been shown to depend on autonomous,
independent learning oehavior, teachers should encourage self-reliance. One
type of indirect instruction that has often proved to be effective is small
group cooperative learning (Lochhead, 1985; Peterson, in press; Shavelson, in
press). Noddings (in press) pointed out that among the several benefits of
small group learning is that small groups allow consultation, a heuristic that
we all use when we meet up with difficulties. Cognitive research in other
content. areas (Brown & Campione, in press), using a reciprocal teaching model
that includes children taking turns playing teacher and posing questions,
summarizing, clarifying and predicting, has been effective in producing self-
monitoring. Reciprocal teaching is based on the premise that the opportunity
to communally construct meanings produces an internalization of the process of

meaning construction (Resnick, in press).
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Mathematical Thinking and Learning: Findings and Implications.

We have called for new modes of teaching which stress the active role
students must play in the construction of their own concepts. There is now
wide agreement among researchers (Resnick (1983); and Linn (1986)) of the need
to pay careful attention to student constructed knowledge (Piaget, 1954). For
example, Resnick (1976), Carpenter, Moser, & Romberg (1982), and Steffe et.
al. (1983) have shown that students invent "counting on from larger" for
themselves (when adding two numbers, say 3+6, the answer is found by counting
7,8,9). It is now clear that children come to school with a rich body of
knowledge about the world around them, including well developed informal
systems of mathematics (Ginsburg, 1977)., Education fails when children are
treated as "blank slates" or "empty jugs", ignoring the fact that they have a
great deal of mathematical knowledge -- some of which surpasses, and some of
which may contradict, what they are being taught in school (Clement, 1977 and
Erlwanger, 1974; Ginsburg, 1977; Gelman & Gallistal, 1978) that can be

exploited in children,

Rote Learning

Probably the most controversial recommendations concerns reducing the
emphasis on rote learned procedures and on algorithms used for extensive paper
and pencil calculations. There is extensive evidence that algorithms, in
themselves, do not aid conceptual understanding. The literature on
arithmetic "bugs" (see, e. g., Brown & Burton, 1978; Maurer, 1987) documents
this point. Research reveals that in some 40% of the mistakes students make
in subtraction one can describe the flawed procedure that produces the

stuzent's answers, and that predict incorrect answers students will produce on
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similar problems. Such consistent but mistaken procedures have a natural

+ ~igin, in the invention of the student. Most of the student "bugs" -- so
named because, like bugs in computer programs, they produce consistent
incorrect answers -- can be explained as intelligent attempts to "patch" rote-
learned algorithms that are poorly understood.

Even when correctly learned, purely "procedural knowledge" -- the ability
to implement mathematical algorithms, but without the underlying conceptual
structures -~ can be extremely fragile. Clement, et al (1979) have shown that
even a solid procedural knowledge of algebra, such as is held by university
level engineering students, does not in most cases (over 80%) imply an ability
to interpret the meaning of algebraic symbols. One can minimize the fragility
of knowledge structures by teaching mathematical concepts in a fashion that
stresses the underlying conceptual models (e.g. Carpenter, Moser, & Romberg,
1982; Davis, 1984; Hiebert, 1986; Romberg & Carpenter, 1986). In sum, we now
know children are active interpreters of the world around them, including the
mathematical aspects of that world (In Piaget's words, "to understand is to
invent." (1973)). This suggests that topics in school should be arranged to
exploit intuitions and informal numerical notions students bring with them to
school. Second, it indicates that predominant tez~hing methods must be
revised to adapt to the notion of child as interpreter (and constructor of

possibly wrong theories) as opposed to child as absorber.

Development of Subject Matter

Researchers have only just begun to construct a detailed map of the
phases children can go through as they gradually build up their understanding
of number and arithmetic (Steffe et al, 1983.) Even at the early ages, the

picture is quite complex. As students develop, it is most effective to engage
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them in meaningful, complex activities focusing on conceptual issues, rather
than establishing all the building blocks firmly before going on to the next
"level". (Collins, Brown & Newman, 1987; Hatano, 1982; Romberg & Carpenter,
1980). 1In certain cases, the order of presentation is critical; early
introduction of some topics can be very damaging. Wearne and Hiebert (1987)
have shown that if calculational algorithms are memorized before the
underlying structure is understood, then "it may be difficult for semantic
information to penetrate routinized rules" (p. 26, Wearne & Hiebert, 1987).
In short, students who learn to calculate too early may find it more difficult
to reach an understanding of the materjal than students who have had no such
experience. But this is not always the case. In fact, Steffe et al (1983)
showed that in some cases, memorized routinized rules must precede
understanding. Children must be able to recite the number words in order
(one, two, three...) before they can develop a concept of counting or number,
_In contrast, there is some evidence1 to suggest that calculation algorithms
involving fractions, decimal long division, and possibly multiplication are
introduced far too soon in the current curriculum. The challenge for
curriculum development (and research) is to determine when routinized rules
should come first, and when they should not. This is an area where far more
research needs to be done.

1 Evidence supporting the delayed introduction of fraction and decimal
calculational algorithms comes mainly in the form of the large number of
Students who never learn these topics. The National Assessments indicate that
a very high percentage of high school students worldwide never master these
topics. This is what one would expect in a case where routinized skills are
blocking semantic learning. The experience of Benazet (1935), who delayed

such instruction until after 6th grade, indicates that such a postponement can
be very helpful.
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Problem Solving Strategies

There is an extensive body of literature (see, e.g., Charles & Silver, in
Press; Kulik, 1980; Mason, Burton & Stacey, 1982; Schoenfeld, 1985; Silver,
1983) indicating that problem solving strategies can be taught, and suggesting
various ways to do so. The main warning from the research literature is that
one should be careful not to trivialize problem solving Strategies, teaching a
collection of isolated tricks (e.g. "of" means multiply, or cross-cancelling
factors). Problem solving strategies, in the spirit of Polya (1945), are
subtle. Important strategies such as "look for a pattern by plugging in
values for n = 1,2,3,4...." cannot be taught effectively, apart from

situational cues which indicate when it is appropriate to apply them.

Metacognition and "Executive Control"

An important aspect of problem solving competence is metacognition - the
ability to know when and why to use a procedure. There is ample evidence
(Collins, Brown, & Newman, in press; Brown, Ferrara & Campione, 1983;
Schoenfeld, 1985; Silver 1985) that students who "know" more than enough
domain-specific subject matter fail to solve problems because they do not use
their knowledge wisely. They may jump into problems, doggedly pursuing a
particular ill-chosen approach to the exclusion of anything else; they may
raise profitable alternatives, but fail to pursue them; they may get
sidetracked into focusing on trivia while ignoring the "big picture."

Research indicates that such "executive" skills can be learned, resulting
in significant improvements in problem solving performance. Effects can be
obtained with interventions as simple as holding class discussions that focus
on executive behaviors, and by explicitly and frequently posing questions such

as:

What are you doingy
Wry are you doing it?
How will it help you?

(Schoenfeld, 1985; Collins, Brown, & Newman, in press.)

Beliefs: Getting a sense of what mathematics is about.

On the Third National Assessment of Educational Progress (Carpenter et.
ai., 1983), a stratified nationwide sample of 45,000 students worked the
following problem:

An army bus holds 36 soldiers. If 1,128 soldiers are being bussed to -
thelr training site, how many buses are needed?

Roughly 29% of the students who worked the problem wrote that the number
of buses needed ic "3} remainder 12," but only 23% gave the correct. answer €0
the problem. Approximately 70% of the studen. who took the examination
Performed the right operation (1,128 divided by 36 yields "31 remainder 12"),
Then, however, fewer than 1/3 of those students wrote 32 buses. How can
Students say that the number of buses includes a remainder?

For most students, the "school mathematics mede" includes a habit of
problem solving without sense~making: one leafns to read the problem, extract
the relevant numbers and the operation to be used, perform the operation, and
write down the result (Lave, in Press; Reusser, in press; Schoenfeld, in
Press-b). Consider, for example the following nonsense problems:

There are 26 sheep and 10 goats or a ship.
How old is the captain?

There are 125 sheep and § dogs 1n a flock.
How old is the shepheri?




Reusser (In press) reports that, asked to "solve" such problems, three
school children in four will produce a numerical answer. There are similar
data for French school children, and the NAEP data speak for themselves. In a
discussion ot these and similar Problems, Reusser suggests that the students
work the problems compliantly, and without asking that they make sense,
because the students have already "learned' that school math problems do not
necessarily make sense. In the context of the mathematics classroom, the
exXpectation is that problems have an answer (why else would the teacher pose
them?) and that some reasonable combination of the numbers in the problem
(usually using the most recent mathematical procedure studied) will yield it.
Students learn to act in the way described in the previous paragraph.

Students constantly strive to make sense of the rules that govern the
world around them, including the world of their mathematics classrooms. If
the classroom patterns are perceived to be arbitrary and the mathematical
operations meaningless -- no matter how well "mastered" as procedures -
students will emerge from the classroom with a sense of mathematics being
arbitrary, useless, and meaningless. Consider the example (Reusser, in press)
of a student working the shepherd problem. This solution, produced by a
student solving the problem out loud, is all too typical:

"125 + 5 = 130... this is too big, and 125 - 5 = 120 is still too

big... while 125/5 = 25. That works. I think the shepherd is 25
years old. "

In short, the "classroom culture" in which students learn mathematics
shapes their developing understanding of the nature of mathematics —--— which,
in turn, shapes how sensibly students will use the mathematics they have
learned. Research indicates (Fawcett, 1938; Lampert, 1987; Lave, in press;

Maseon, Burton, & Stacey, 1982; Schoenfeld, in press-b) that it is indeed
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possible to create classroom environments that are, in essence, cultures of
sense-making -- and from which students emerge with an understanding of
mathematics as a discipline which helps to make sense of things. The goal of
teaching sense-making via mathematics should be a central concern of our |

curricular efforts.

Use of Calculator and Computer Technology

At the turn of the century a social planner might have expressed concern
over the consequences of widespread access to the automobile. But in the last
analysis research evidence Pro or con the automobile would have been
irrelevant and ignored. The type of study that might have made sense would
have assumed the car and considered how best to use it. We believe the same
is true of computers and calculators. Like it or not, they are a fact of
life.

Computers have already changed the face of mathematics. New fields of

inquiry, such as fractal geometry, depend in large part on the computer for
their very existence. Much of modern mathematics is inaccessible and
inexplicable without access to computers,

But it is still reasonable to ask whether computers and calculators in
the curriculum may not pose some serious dangers. 1In particular, should they

be introduced early before students have mastered the basics?

Effects of Calculators

The effects of calculators in school mathematics have peen studied in
over 100 formal investigations during the past 15 years. Those studies have
tested the impact of a variety of kinds of caiculator use-~from limited access

in carefully selected situations to access for all aspects of mathematics
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instruction and testing. There have been two major summaries of reported
research on calculator usage (Sudyam, 1982; Hembree and Dessart, 1986). 1In
almost every reported study, the performance of Broups using calcula“>rs
equalled or exceeded that of control groups denied calculator use.

The recent Hembree and Dessart meta-analysis of 79 calculator studies
sorted out the effects of calculator use on six dimensions of attitude toward
mathematics as well as on acquisition, retention, and transfer of
compui ational skill, conceptual understanding, and problem solving ability.
The analysis led them to conclude:

1. Students who use calculators in concert with traditional instruction
maintain their paper-and-pencil skills without apparent harm,
Indeed, a use of calculators can improve the average student's
basic skills ywith paper and pencil, both in basic operations and

in problem solving.

2. One study reported that sustained Calculator use by average students
in Grade 4 appears counterproductive with regard to basic skills,

3. The use of calculators in testing produces much higher achievement
scores than paper-and-pencil efforts, both in basic operations and
in problem solving. This statement applies across all grades and
ability levels. 1In particular, it applies for low- and high-
ability students in problem solving. The overall better
performance in problem solving appears to be a result of improved
computation and process selection.

4. Students using calculators possess a bet*er attitude toward
mathematics and an especially better self-concept in mathematics
than noncalculator students. This statement applies across all
grades and ability levels,

5. Studies with special curricula indicate that materials and methods
can be developed for enhancing student achievement through
instruction oriented toward the calculator. However, such special
instruction has been relatively unexamined by research.

(Source: Hembree and Dessart, 1986, pp. 96-97)

These findings speak directly to a number of common concerns about the
potential impact of widespread calculator use in school mathematics. For

those who believe that Some me:sure of skill in traditional arithmetic
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algorithms will continue to be important for most students to acquire, the

research suggests that access to calculators in a well-planned program of
instruction is not likely to obstruct achievement of those skills, 1In fact,
it might well enhanca acquisition of traditional skills. More optimistically,
it appears that when students have access to calculators for learning and
achievement testing, they perform at significantly higher levels on both
computation and problem solving measures. In particular, students using
calculators seem better able to focus on correct process analysis of problem

situations.

Effects of Computers

The earliest educational use of computers was Primarily to deliver
computer assisted instruction, often in a programmed learning style of
instruction, and most frequently, for drill or rote skills. Several reviews
of research on effectiveness of CAI (Kulik, et al, 1986) have concluded that
it is generally very effective, giving better achievement in shorter time than
traditional instruction.

Lately, principles of artificial intelligence have been applied to the
design of sophisticated tutors for algebra, geometry, and calculus. The
designers Suggest that the use of such tutors can yield dramatic increases in
student achievement. However, no data is available about the use of such
tutors in realistic classroom settings.

There are several kinds of computer-based strategies for giving students
impressive new learning tools and exploratory environments (Hansen, 1984; Pea,
1987, Schoenfeld, in Press a). Best known is Logo and its turtle graphics
feature to teach students concepts of geometry, algebra, and general higher

order thinking skills (Papert, 1980). Research findings have failed to
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confirm the strongest claims that Logc develops high level general reasoning
abilities., But a variety of studies have found positive effects on more
specific instructional goals (Campbell, 1987), and thousands of classroom
teachers have been convinced by first-hand experience that LOGO is a powerful
instructional tool.

A somewhat different sort of computer-based exploratory tool has been
provided by the Geometric Supposer (Schwartz & Yerushalmy, 1987), and by the
Geodraw software developed at' Wicat (Bell, 1987). 1In each, the idea is to
give students open but guided environments for exploring the results of
geometric constructions. A comparable setting for algebraic exploration is
provided by the Green Globs software of Dugdale (1982). fThere is little

formal research describing the effects of these learning and teaching tools.

Yerushalmy, Chazan, and Gordon (1987) provide evidence suggesting that

students using the SUPPOSER m.y perform as well or better than control

studeats on traditional geometry criteria, while at the same time learning

other objectives as well.

There have been some specific research studies investigating the effects

of computer graphics on student understanding of mathematical concepts like

function (Rhoads, 1986; Schoenfeld, 1988). fThe curriculum development work of

Demana, Leitzel, Osborne, and Waits at Ohio State University has taken

particular advantage of spreadsheet~like software to develop students!

numerical intuition about variables and equations in pre-algebra and pre-

calculus mathematics. In each case, the computer seems clearly to enhance

student interest and understanding of important ideas.

Most studies have focused, in one way or another, on finding better ways

to reach traditional goals. There have been some notewortly exceptions to

that pattern--studies that explore daring departures from conventional
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curriculum priorities. Both Lesh (1986) and Heid and Kunkle (1988) tested the
effects of algebra instruction in which students used symbol manipulation
software to perform routine tasks like solving equations. Each found that
students who were freed from the traditional symbolic procedural aspects of
Problem solvirg became much more adept at the important problem formulation
and interpretation phases. 1In two similar studies of computer-aided calculus,
Heid (1988) and Palmiter (1986) found that students who learned the subject
with aid of computer tool software developed much deeper understanding of
fundamental concepts than did students in traditional skill-oriented courses.
Heid also found that her students picked up needed procedural knowledge in a
short time period following the careful conceptual background, and Palmiter
feund that her studernts acquired their understanding much more quickly than
students in conventional courses.

Each of these studies addresses the fundamental question of technology
applied to mathematics curriculum: what are the essential interactions of
conceptual and procedural knowledge and problem solving ability? If we
diminish attention to the traditional procedurai skill agendas in various
branches of mathematics, will something essential to problem solving or
conceptual learning be inadvertently lost? A fair test of this question
involves extensive and radical curriculum development and field testing with
attendant risks for students who study the new curricula. Not surprisingly,
the only work of this tyPe has been in limited numbers of classes and
situations. At the University of Maryland, a computer-intensive elementary
algebra program has been developed to explore the feasibility of teaching
fundamental concepts and problem solving abilities while using technology to
perform nearly all of the traditional symbol manipulation skills. Preliminary

evidence indicates that students can approach algebra as the study of
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functions and their application as models of quantitative interactions, that
they can become flexible and effective algebraic problem solvers, and that the
rich conceptual background of understanding about variables, functions,
equations, and inequalities they acquire provides a Strong foundation for the
more abstract task of learning appropriate symbol manipulation skills later
(Heid, 1988).

The research cited above indicates that access to computers and
calculators need not hinder attainment of traditional curricular objectives,
and that it may substantially advance it. Unfortunately, there is currently
no consensus on how to investigate possible dramatically new effects such as
the improvement of higher order thinking skills. A series of articles in

Educational Researcher (Papert (1987); Pea (1987); wWalker (1987); and Becker

(1987)) illustrates the wide diversity of opinion on this topic. A key
concern is the extent to which the development of powerful reasoning can be
inferred from written test performance or within the limited time spans of
most research studies.

From the few attempts that have been made to measure massive changes in
reasoning power it is possible to conclude that such advancements cannot come
from trivial technological fixes. It has often been propcsed that the
availability of computers would, more or less in itself, produce significant
improvements in mathematical thinking. Repeated attempts to document such
change has yet to reveal a lasting effect: e.g. Pea's study of the effect of
LOGO on planning, Soloway's investigation of the impact of PASCAL on
understanding of algebraic syntax and Perkin's research concerning the
cognitive impact of learning programming meta-principles in BASIC. While
these results do not imply that computers cannot be used to improve

mathematical thinking, they suggest that-simplistic approaches are not likely
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to work. Thus teachers and curriculum designers probably will have a
significant role to play in education, far into the computer age. The
computer will remain a tool for teachers and Students to use, thus integration
of technology into "Classroom Ecology" must remain a high priority research

item.

Future Directions for Research

Order of Learning

Many topics can be taught earlier than they have been, others ought to be
taught later. Since it is impossible to forecast the full implications of
such changes, they should first be implemented in a research environment.

Such studies must go beyond evaluating student progress in terms of
superficial measures, they must examine deep conceptual understanding as well
as the long-term effects of gaining or not gaining such understandings at a

certain stage.

Levels of Learning

It seems clear that the new representations and computational aids made
possible through computer technology now allow us to teach some concepts much
earlier than they had been Previously. Research needs to be done on the
degree to which students really understand advanced concepts when they are
introduced early. The goal of such research should be to find a suitable

sequencing and pace for the introduction of now topics.
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Modes of Learning

We have discussed the growing evidence supporting the need for new modes
of instruction. The theoretical basis for many of the proposed new techniques
is recognition of the active role students must take in constructing their own
knowledge. Studies are now needed that can determine the long term effects of
early exposure to various different modes of mathematical instruction on
mathematical competence and on Zfacility a: learning new mathematical concepts.
In evaluating instructional techniques it is important to avoid criteria which

value maximizing current performance without regard to the extended impact,

The Roles of Arithmetic and Algebraic Manipulative Skills

With-in the next decade hand-held calculators capable of performing
symbolic manipulations (e.g. solving linear and quadratic equations in ore
variable, pairs of linear equations in two variables, etc.) will become widely
available. Just as the current generation of calculators allows for the
rearrangement of arithmetic topics (postponing some paper and pencil rote
skills until appropriate) the next generation of calculators will allow much
more flexibility in the order of advanced topics: allowing students, for
example, to do much less algebraic symbol manipulations. We must, therefore,
formulate a new set of fundamental manipulative skills, and determine when

each of these skills should be introduced.

The Relation Between Drill-and-Practice and Understanding Mathematics

The questions of how much Paper-and-pencil arithmetic to teach to
elementary school children and how much symbol manipulation proficiency is
desirable for secondary school students depends crucially on the correlation

of such skills with achieving an understanding of the underlying mathematics,
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Once the development of such skills could be justified on social and economic
grounds. But the rapid advance of calculator and computer technology has
undermined such a justification. The question of what, if any, level of
manipulative skill is necessary in order, to be zble to understand - and thus,
use - mathematics in a problem-solving context is a very difficult one on

which research is badly need-d.

Evaluations of the Effects of Entire Curriculae: the "Transfer Problem"

We need research which can help us to leary: more about the ways in which
mathematical experiences shape people's understanding of mathematics,
understandings which often mitigate against the use of mathematics in real
world situations. We need to study ways of developing curriculae that help to
solv. the "Transfer Problem": that is to provide students with the sort of
background that will encourage, rather than discourage, their ability to apply

what they have learned in out of school contexts.

Instructional Uses of Technology

The "“information explosion" has just begun to result in tools that can
have significant impact on the instructional process. What kinds of
mathematical comprehension can these new tools foster (arc there negative
side~effects) and how do they fit within the context of schooling? Critical
here is the question of access. If home computers become a significant part
of the instructional process, what happens to those who do not have such

tools?
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Summary
The need for a structural scientific approach te curriculum and

instructional development in mathematics has never been greater, and it is

increasing at a very rapid rate. Sooner or later we may be forced to take it

seriously.
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